Abstract

This report describes the assembly of laterally diffusive lipid layers within the pores of colloidal crystals for potential application in membrane-based sensing. The amount of lipid encapsulated within colloidal crystals depends upon the method used to introduce the lipid to the crystalline substrate. Relative to a planar supported lipid bilayer, lipid loading in a 6.6 microm thick crystal was 15-73 times greater, as observed by fluorescence microscopy. Protein adsorption studies indicate that the crystal pores are open and that the silica surface of the crystal is passivated with respect to adsorption of a model protein when coated with POPC. Furthermore, the mesoporous environment of the colloidal crystal is found to protect lipid films from drying and rehydration processes that destroy planar supported lipid bilayers. The potential of colloidal crystal encapsulated lipid films for chemical sensing is demonstrated by a model protein binding assay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.