Abstract

We show that the disorder scaling of the low-temperature optical absorption linewidth of tubular molecular assemblies sharply contrasts with that known for one-dimensional aggregates. The difference can be explained by an anomalous localization of excitons, which arises from the combination of long-range intermolecular interactions and the tube's higher-dimensional geometry. As a result, the exciton density of states near the band bottom drops to zero, leading to a strong suppression of exciton localization. Our results explain the strong linear dichroism and weak exciton-exciton scattering in tubular J aggregates observed in experiments and suggest that for nanoscale wirelike applications a tubular shape is to be preferred over a truly one-dimensional chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.