Abstract

Trypanosoma evansi, the causative agent of surra, is the most prevalent pathogenic salivarian trypanosome and affects the majority of domesticated and wild animals in endemic regions. This work aimed to analyze detergent-solubilized T. evansi proteins and identify potential diagnostic biomarkers for surra. Triton X-114-extracted membrane-enriched proteins (MEP) of T. evansi bloodstream forms were analyzed using a gel-free technique (LC-ESI-MS/MS). 247 proteins were identified following the MS analysis of three biological and technical replicates. Two of these proteins were predicted to have a GPI-anchor, 100 (40%) were predicted to have transmembrane domains, and 166 (67%) were predicted to be membrane-bound based on at least one of six features: location (WolfPSORT, DeepLoc-2.0, Protcomp-9.0), transmembrane, GPI, and gene ontology. It was predicted that 76 (30%) of proteins had membrane evidence. Typical membrane proteins for each organelle were identified, among them ISG families (64, 65, and 75 kDa), flagellar calcium-binding protein, 24 kDa calflagin, syntaxins and oligosaccharyltransferase some of which had previously been studied in other trypanosomatids. T. evansi lacks singletons and exclusive orthologous groups, whereas three distinct epitopes have been identified. Data are available via ProteomeXchange with identifier PXD040594. SignificanceTrypanosoma evansi is a highly prevalent parasite that induces a pathological condition known as “surra” in various species of ungulates across five continents. The infection gives rise to symptoms that are not pathognomonic, thereby posing challenges in its diagnosis and leading to substantial economic losses in the livestock industry. A significant challenge arises from the absence of a diagnostic test capable of distinguishing between Trypanosoma equiperdum and T. evansi, both of which are implicated in equine diseases. Therefore, there is a pressing need to conduct research on the biochemistry of the parasite in order to identify proteins that could potentially serve as targets for differential diagnosis or therapeutic interventions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call