Abstract

Arouquesa cattle breed is an autochthonous Portuguese breed produced under a traditional mountain system that need improvement without affecting beef quality. The aim of this work is to compare the proteomics profiles of the Longissimus thoracis muscle from Arouquesa animals produced under different production systems. Sixty weaners were produced under the following systems: traditional (TF) and traditional with starter feed supplementation (TF + S1) with weaning and slaughtering at 9 months, the S1 + S2 (weaning at 5 months and grower supplement until slaughter) and two rearing periods with finishing supplementation (TF + S3 and S3). Upon slaughter, samples of L. thoracis were taken and analyzed using a shotgun proteomics workflow. Several putative markers of beef quality for the Arouquesa breed were identified: VIM, FSCN1, SERPINH1, ALDH1A1, NDUFB5, ANXA1, PDK4, CEMIP2, NDUFB9, PDLIM1, OXCT1, MYH4. These proteins are involved in actin binding, skeletal muscle development and in the mitochondrial respiratory chain and they can influence mostly meat tenderness and color. We identified specific proteins for each group related to different metabolisms involved in several aspects that affect meat quality parameters. Our results demonstrate the link between production practices and putative meat characteristics, which have the potential to improve the traceability of certified products. SignificanceArouquesa breed is produced in a sustainable system using natural resources and contributing to the economy of low-populated rural regions in Northern Portugal. Besides their economic relevance, producing autochthonous breeds can counter rural depopulation and maintain local heritage. Additionally, consumer awareness about product quality is increasing and PDO products contribute to satisfying this demand. However, it is necessary to increase production so that it is possible to sell these products outside the production region. To ensure robust traceability and that PDO label characteristics are maintained despite increasing production yield, product analysis is of paramount importance. For this reason, proteomic approaches can provide insight into how production changes will affect beef quality and generate putative biomarkers of certified production systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.