Abstract

Hydrological forecasting is one of the key research areas in hydrology. Innovative forecasting tools will reform water resources management systems, flood early warning mechanisms, and agricultural and hydropower management schemes. Hence, in this study, we compared Stacked Long Short-Term Memory (S-LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), and Gated Recurrent Unit (GRU) with the classical Multilayer Perceptron (MLP) network for one-step daily streamflow forecasting. The analysis used daily time series data collected from Borkena (in Awash river basin) and Gummera (in Abay river basin) streamflow stations. All data sets passed through rigorous quality control processes, and null values were filled using linear interpolation. A partial autocorrelation was also applied to select the appropriate time lag for input series generation. Then, the data is split into training and testing datasets using a ratio of 80 : 20, respectively. Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R2) were used to evaluate the performance of the proposed models. Finally, the findings are summarized in model variability, lag time variability, and time series characteristic themes. As a result, time series characteristics (climatic variability) had a more significant impact on streamflow forecasting performance than input lagged time steps and deep learning model architecture variations. Thus, Borkena’s river catchment forecasting result is more accurate than Gummera’s catchment forecasting result, with RMSE, MAE, MAPE, and R2 values ranging between (0.81 to 1.53, 0.29 to 0.96, 0.16 to 1.72, 0.96 to 0.99) and (17.43 to 17.99, 7.76 to 10.54, 0.16 to 1.03, 0.89 to 0.90) for both catchments, respectively. Although the performance is dependent on lag time variations, MLP and GRU outperform S-LSTM and Bi-LSTM on a nearly equal basis.

Highlights

  • In this study, we compared Stacked Long Short-Term Memory (S-LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), and Gated Recurrent Unit (GRU) with the classical Multilayer Perceptron (MLP) network for one-step daily streamflow forecasting. e analysis used daily time series data collected from Borkena and Gummera streamflow stations

  • Wide variates of classical and deep learning models are present in the literature for time series forecasting, which includes Artificial Neural Network (ANN), Support Vector Machine (SVM), Fuzzy Logic (FL), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Genetic Programming (GP)

  • Even though we found multiple effective forecasting models with GRU and LSTM in different fields, in hydrology, the accuracy of these models must be further fine-tuned with different data processing techniques and data input variations [24,25,26,27]

Read more

Summary

Eyob Betru Wegayehu and Fiseha Behulu Muluneh

Time series characteristics (climatic variability) had a more significant impact on streamflow forecasting performance than input lagged time steps and deep learning model architecture variations. AI-based data-driven streamflow forecasting models can be univariate when the model’s input and output are designed with a single time series variable. Wide variates of classical and deep learning models are present in the literature for time series forecasting, which includes Artificial Neural Network (ANN), Support Vector Machine (SVM), Fuzzy Logic (FL), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Genetic Programming (GP). E popular deep learning models applied in different fields of studies are Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), Radial Basis Function Networks (RBFN), and Generative Adversarial Network (GAN) [21, 25, 43,44,45,46].

Gauging station
Standard Deviation
Output Layer
Input Layer
Pointwise Multiplication ht Output of Current Block
Results and Discussion
Gummera Partial Autocorrelation
MLP GRU
Test Forecasted
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call