Abstract

An efficient management and better scheduling by the power companies are of great significance for accurate electrical load forecasting. There exists a high level of uncertainties in the load time series, which is challenging to make the accurate short-term load forecast (STLF), medium-term load forecast (MTLF), and long-term load forecast (LTLF). To extract the local trends and to capture the same patterns of short, and medium forecasting time series, we proposed long short-term memory (LSTM), Multilayer perceptron, and convolutional neural network (CNN) to learn the relationship in the time series. These models are proposed to improve the forecasting accuracy. The models were tested based on the real-world case by conducting detailed experiments to validate their stability and practicality. The performance was measured in terms of squared error, Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). To predict the next 24 hours ahead load forecasting, the lowest prediction error was obtained using LSTM with R2 (0.5160), MLP with MAPE (4.97), MAE (104.33) and RMSE (133.92). To predict the next 72 hours ahead of load forecasting, the lowest prediction error was obtained using LSTM with R2 (0.7153), MPL with MAPE (7.04), MAE (125.92), RMSE (188.33). Likewise, to predict the next one week ahead load forecasting, the lowest error was obtained using CNN with R2 (0.7616), MLP with MAPE (6.162), MAE (103.156), RMSE (150.81). Moreover, to predict the next one-month load forecasting, the lowest prediction error was obtained using CNN with R2 (0.820), MLP with MAPE (5.18), LSTM with MAE (75.12) and RMSE (109.197). The results reveal that proposed methods achieved better and stable performance for predicting the short, and medium-term load forecasting. The findings of the STLF indicate that the proposed model can be better implemented for local system planning and dispatch, while it will be more efficient for MTLF in better scheduling and maintenance operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.