Abstract

Globally non-positively curved, or CAT(0), polyhedral complexes arise in a number of applications, including evolutionary biology and robotics. These spaces have unique shortest paths and are composed of Euclidean polyhedra, yet many algorithms and properties of shortest paths and convex hulls in Euclidean space fail to transfer over. We give an algorithm, using linear programming, to compute the convex hull of a set of points in a 2-dimensional CAT(0) polyhedral complex with a single vertex. We explore the use of shortest path maps to answer single-source shortest path queries in 2-dimensional CAT(0) polyhedral complexes, and we unify efficient solutions for 2-manifold and rectangular cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.