Abstract
To date, the robustness of performance, including tolerance to channel-length scaling effects, in scaled transistors has become increasingly important. Negative capacitance (NC) field-effect transistors (FETs) have drawn considerable attention and many studies have revealed that the NC effect is beneficial for device scaling. However, there is a lack of experimental evidence of short-channel behavior in NC-FETs with two-dimensional (2D) semiconducting channels and theoretical studies are limited. Here, we experimentally study 2D MoS2-based NC-FETs using MoS2 with CMOS-compatible hafnium zirconium oxide (HfZrO2 or HZO) as the ferroelectric (FE) and demonstrate remarkable short-channel behavior compared to similar 2D MoS2 FETs. It was observed that the subthreshold switching improvement becomes increasingly significant at shorter channel lengths, down to 20 nm. From analysis of the capacitive network, we show that the NC effect is impacted by a larger magnitude of polarization in the ferroelectric, which enhances gate control and is beneficial to channel-length scaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.