Abstract

Metastable pseudomorphic epi-GexSi1−x (x=8%, 16%) films of a common thickness of 145±10 nm were deposited on Si(100) substrates by chemical vapor deposition and then implanted at room temperature with 90 keV arsenic ions to a dose of 1.5×1015/cm2. This implantation amorphizes the top ∼125 nm of the epi-GeSi layers. Implanted as well as nonimplanted GeSi samples were subsequently annealed by (1): short (10–40 s) lamp annealing in nitrogen ambient at 600–800 °C; or (2): long (30 min) furnace annealing in vacuum (∼5×10−7 Torr) at 500–800 °C. Silicon samples were also implanted and annealed as references. The amorphized epi-GeSi recrystallizes via solid-phase epitaxy when annealed at or above 500 °C. The initial pseudomorphic strain of the epi-GeSi is thereby lost for both short and long annealing. High densities of dislocations (1010–1011/cm2) are typically present in the regrown GeSi layers, but not in the regrown Si samples. Just after the completion of solid-phase epitaxial regrowth, ∼80%–100% of the implanted arsenic ions become electrically active; further annealing decreases the activation. We conclude and generalize that metastably strained GeSi layers amorphized by a high dose of implanted dopants will not recover their original crystallinity and strain after solid-phase epitaxial regrowth, regardless of annealing procedure, although the implanted dopants are electrically activated in the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call