Abstract
Brick-and-mortar shopping malls are embracing Artificial Intelligence (AI) technology and recommender systems to enhance the shopping experience and boost mall revenue. Echoing this trend, we formulate a new shopping trip recommendation problem, which aims to recommend a shopping trip (i.e., a list of stores) that matches customer preferences and has appropriate trip lengths. To solve this problem, we develop a novel deep learning-enhanced global planning (DeepGP) approach featuring three methodological novelties. First, we introduce a new shopping intensity term based on deep neural networks to capture the variation of trip lengths specific to different shopping contexts. Second, we innovatively formulate the learning and optimization objectives in a consistent form by balancing the shopping choice likelihood and the shopping intensity likelihood, thus resolving the inconsistency issue encountered by prior global planning methods. Third, to overcome the computational challenge caused by the nonlinear shopping intensity term, we design a new exact and efficient solution technique based on piecewise linear transformations. Using a real-world offline shopping dataset, we empirically demonstrate the superior performances of our approach compared to representative benchmarks in offering more accurate and relevant shopping trip recommendations. Through a simulation, we show the capacity of our approach to attract and balance customer traffic in practical deployments. Overall, our research highlights the efficacy of combining shopping choices and shopping intensity in a consistent learning and optimization framework for offline shopping trip recommendations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have