Abstract
A study on seasonal phytoplankton abundance and composition in a mangrove estuary, Matang Mangrove Forest Reserve (MMFR), Malaysia, was carried out to determine the phytoplankton structure in this ecosystem, and to identify potential indicators of environmental changes. Phytoplankton samples were collected bimonthly from June 2010 to April 2011, to cover both dry (June to October) and wet (November to April) seasons, at four selected sampling sites along the river. Diatoms showed the highest number of species (50 species) from a total of 85 phytoplankton species from 76 genera. Diatoms contributed more than 90% of the total phytoplankton abundance during the dry season (southwest monsoon) and less than 70% during the wet season (northeast monsoon) as dinoflagellates became more abundant during the rainy season. Two diatoms were recorded as dominant species throughout the sampling period; Cyclotella sp. and Skeletonema costatum. Cyclotella sp. formed the most abundant species (62% of total phytoplankton) during the dry period characterized by low nutrients and relatively low turbidity. Skeletonema costatum contributed 93% of the total phytoplankton in October, which marked the end of the dry season and the beginning of the wet season, characterized by strong winds and high waves leading to the upwelling of the water column. Massive blooms of Skeletonema costatum occurred during the upwelling when total nitrogen (TN) and total phosphorus (TP) concentrations were highest (p < 0.05) throughout the year. The abundance of diatom species during the wet season was more evenly distributed, with most diatom species contributing less than 12% of the total phytoplankton. Autotrophic producers such as diatoms were limited by high turbidity during the northeast monsoon when the rainfall was high. During the wet season, Cyclotella and Skeletonema costatum only contributed 9% and 5% of the total phytoplankton, respectively, as dinoflagellates had more competitive advantage in turbid waters. This study illustrates that some diatom species such as Cyclotella sp. and Skeletonema costatum could be used as indicators of the environmental changes in marine waters.
Highlights
The mangrove ecosystem is known as a dynamic and highly productive area with rich diversity
Higher phytoplankton densities in the mangrove estuarine waters coincided with higher nutrient availability during the upwelling, illustrating the relationship between diatoms and environmental changes, especially those related to eutrophication
Main driving factors influencing the seasonal dynamics of major diatom species (S. costatum, Cyclotella sp. and Coscinodiscus sp.) were the rainfall, tidal mixing, nutrients (SRP, TAN and total nitrogen (TN)), temperature and pH which accounted for 93.0% of the total variance
Summary
The mangrove ecosystem is known as a dynamic and highly productive area with rich diversity. This unique ecosystem is generally characterized by different mangrove species with different adaptive root systems that enable them to survive in harsh conditions with silty and endless ebbs of flowing water [1]. Despite various benefits to flora and fauna, mangroves provide significant contributions to humans with regard to economic and cultural aspects [4,5]. The dynamics of coastal zones indirectly involve climate changes, which may disrupt the mangrove system through higher sea-level rise, seawater acidification, storms, and cause typical coastal problems such as flooding and erosion, as well as economic losses and human fatalities [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.