Abstract

We report the creation and properties of colloidally stable shell-cross-linked cylindrical organometallic block copolymer micelles with adjustable length and swellability. The one-dimensional (1D) structures with semicrystalline polyferrocenylsilane (PFS) cores and polyisoprene (PI) coronas were initially self-assembled from PI-b-PFS block copolymers in a PI-selective solvent such as hexane. The length of the cylinders could be varied from hundreds of nanometers to several tens of micrometers by adjusting solution conditions, using various solvents such as hexane, decane, or hexane/THF (or toluene) mixtures. The cylindrical micelles with vinyl groups in the PI corona were cross-linked through a Pt(0)-catalyzed hydrosilylation reaction using 1,1,3,3-tetramethyl disiloxane as a cross-linker at room temperature. The shell cross-linking significantly increased the stability of the micelles relative to the un-cross-linked precursors as no fragmentation was observed upon sonication in solution. In addition, the structural integrity of the micelles was also enhanced after solvent removal; a solid sample was successfully microtomed and then examined using TEM, which revealed circular cross-sections for the PI-b-PFS micelles with an average diameter of ca. 15 nm. We also discovered that shell cross-linking is a prerequisite for generating ceramic replicas through the pyrolysis of PI-b-PFS aggregates. Moreover, we were able to pattern the cross-linked micelles on a flat substrate by microfluidic techniques, generating perpendicularly crossed lines of aligned micelles. In short, the shell-cross-linked PI-b-PFS 1D organometallic aggregates are a promising new type of nanomaterial with intriguing potential applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call