Abstract
Amide alkylation is a fundamental process in organic chemistry. However, the low nucleophilicity of amides means that divergent coupling with alkyl electrophiles is often not achievable. To circumvent this reactivity challenge, individual amine synthesis followed by amidation with standard coupling agents is generally required. Herein, we demonstrate a radical solution to this challenge by using an amine-borane complex and copper catalysis under oxidative conditions. While borohydride reagents are generally used as reducing agents in ionic chemistry, their conversion into amine-ligated boryl radicals diverts their reactivity toward halogen-atom transfer. This enables the conversion of alkyl halides into the corresponding alkyl radicals for amide functionalization via copper catalysis. The process is applicable to the N-alkylation of primary amides employing unactivated alkyl iodides and bromides, and it was also showcased in the late-state functionalization of both complex amide- and halide-containing drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.