Abstract
Super-resolution imaging has recently been utilized to develop a better understanding of the properties of surface-enhanced Raman scattering (SERS) hot spots. SERS hot spots are much smaller than the diffraction limit of light, and therefore, obtaining a clear picture of the enhanced electromagnetic (EM) fields comprising these hot spots is a challenging task. In this Perspective, we discuss recent work applying super-resolution imaging to single-molecule SERS (SM-SERS) of rhodamine 6G (R6G) adsorbed to randomly assembled silver colloidal aggregates, allowing the shape, size, and local enhancement of the hot spots to be imaged with <5 nm resolution. The results are compared with studies applying super-resolution imaging to surface-enhanced fluorescence (SEF) of analytes diffusing into silver nanoparticle hot spots. Both studies show a strong correlation between emission intensity and position, allowing the EM field enhancements of SERS hot spots to be mapped with sub-5 nm resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.