Abstract
We present the first super-resolution optical images of single-molecule surface-enhanced Raman scattering (SM-SERS) hot spots, using super-resolution imaging as a powerful new tool for understanding the interaction between single molecules and nanoparticle hot spots. Using point spread function fitting, we map the centroid position of SM-SERS with +/-10 nm resolution, revealing a spatial relationship between the SM-SERS centroid position and the highest SERS intensity. We are also able to measure the unique position of the SM-SERS centroid relative to the centroid associated with nanoparticle photoluminescence, which allows us to speculate on the presence of multiple hot spots within a single diffraction-limited spot. These measurements allow us to follow dynamic movement of the SM-SERS centroid position over time as it samples different locations in space and explores regions larger than the expected size of a SM-SERS hot spot. We have proposed that the movement of the SERS centroid is due to diffusion of a single molecule on the surface of the nanoparticle, which leads to changes in coupling between the scattering dipole and the optical near field of the nanoparticle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nano Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.