Abstract
Single-photon sources constitute one of the crucial enabling technologies for quantum communications, quantum computation, and quantum-enhanced metrology. Typical quantum emitters (QEs) used for realizing single-photon sources feature low emission rates, non-directional emission, and poorly defined polarization properties, characteristics that prevent QEs from being directly used in quantum technologies. By using properly nanostructured environment, i.e., by coupling QEs with nanocavities or nanoantennas, the QE emission characteristics can be improved drastically due to the Purcell effect and properly engineered near-field interactions that determine the far-field radiation properties. Single photons carrying spin angular momentum (SAM), i.e., circularly polarized single photons generated typically by subjecting QEs to a strong magnetic field at low temperatures, are at the core of chiral quantum optics [1] enabling non-reciprocal single-photon configurations and deterministic spin-photon interfaces. In this talk, I present a conceptually new approach to the room-temperature generation of SAM-coded single photons (SSPs) entailing QE non-radiative coupling to surface plasmons that are transformed, by interacting with an optical metasurface [2], into a collimated stream of SSPs with the designed handedness. The results of detailed simulations as well as the first experimental results are presented, and their implications for experiments in chiral quantum optics are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.