Abstract
Single photons carrying spin angular momentum (SAM), i.e., circularly polarized single photons generated typically by subjecting a quantum emitter (QE) to a strong magnetic field at low temperatures, are at the core of chiral quantum optics enabling nonreciprocal single-photon configurations and deterministic spin-photon interfaces. Here, a conceptually new approach to the room-temperature generation of SAM-coded single photons (SSPs) is described, which entails QE nonradiative coupling to surface plasmons being transformed, by interacting with an optical metasurface, into a collimated stream of SSPs with the designed handedness. Design, fabrication, and characterization of SSP sources, consisting of dielectric circular nanoridges with azimuthally varying widths deterministically fabricated on a dielectric-protected silver film around a nanodiamond containing a nitrogen-vacancy center, are reported. With properly engineered phases of QE-originated fields scattered by nanoridges, the outcoupled photons are characterized by a well-defined SAM (with the chirality >0.8) and high directionality (collection efficiency up to 92%).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.