Abstract

The adsorption of particles onto fluid membranes can lead to membrane-mediated interactions between particles that promote their self-assembly and lead to changes in membrane morphology. However, in contrast with rigid particles, relatively little is known about deformable particles, which introduce additional complexities due to the mutual deformability of the particles and the membrane. Here, we use Monte Carlo simulations and umbrella sampling to investigate the equilibrium properties of hinge-like particles adsorbed on membrane vesicles by means of anisotropic, attractive interactions. We vary the hinge stiffness, adhesive area fraction, patterning of adhesive regions, and number of adsorbed particles. Depending on their properties, isolated particles can conform to the vesicle, induce invaginations of the membrane, or exhibit multistable behavior in which they sample distinct classes of configurations due to the interplay of particle and membrane deformations. With two adsorbed particles, the properties of the particles can be used to promote aggregation, bias the particles to different parts of the vesicle, or stabilize the coexistence of both cases. With multiple adsorbed particles, the number and type control their organization and collective impact on the vesicle, which can adopt shapes ranging from roughly spherical to dumbbell-like and multi-lobed. Our results highlight how modifying the mechanical properties and patterned adhesion of deformable particles, which is possible with DNA nanotechnology, influences their self-assembly and the resulting shapes of both the particles and vesicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.