Abstract
Shape and surface chemistry control in copper nanoparticle synthesis is an important research area due to a wide range of developing applications of this material in catalysis, energy conversion, sensing and many others. In addition to being an inexpensive and abundant metal, copper is an attractive photocatalyst due to its optical properties in the visible range. Here, we report a facile, tunable and sustainable methodology for synthesizing Pd-seeded Cu nanoparticles with various shapes, including cubes, spheres, raspberry-like particles and cages stabilized with a bilayer of a cationic surfactant in aqueous media. The experimental and theoretical examination of the optical response in the series of synthesized nanoparticles revealed that the low-energy extinction peak is associated with electronic interband transitions in the metal, in contrast to a widely spread attribution of this peak to a plasmonic response in Cu nanoparticles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have