Abstract

— During 1997 and 1998, twelve chemical explosions were detonated in boreholes at the former Soviet nuclear test site near the Shagan River (STS) in Kazakhstan. The depths of these explosions ranged from 2.5 to 550 m, while the explosive yield varied from 2 to 25 tons. The purpose of these explosions was for closure of the unused boreholes at STS, and each explosion was recorded at local distances by a network of seismometers operated by Los Alamos National Laboratory and the Institute of Geophysics for the National Nuclear Center (NNC). Short-period, fundamental-mode Rayleigh waves (Rg) were generated by these explosions and recorded at the local stations, resultingly the waves exhibited normal dispersion between 0.2 and 3 seconds. Dispersion curves were generated for each propagation path using the Multiple Filter Analysis and Phase Match Filtering techniques. Tomographic maps of Rg group velocity were constructed and show a zone of relatively high velocities for the southwestern (SW) region of the test site and slow propagation for the northeastern (NE) region. For 0.5 sec Rg, the regions are separated by the 2.1 km/sec contour, as propagation in the SW is greater than 2.1 km/sec and less in the NE region. At 1.0 sec period, the 2.3 km/sec contour separates the two regions. Finally, for 1.5 and 2.0 sec, the separation between the two regions is less distinct as velocities in the NE section begin to approach the SW except for a low velocity region (<2.1 km/sec) near the center of the test site. Local geologic structure may explain the different regions as the SW region is composed predominantly of crystalline intrusive rocks, while the NE region consists of alluvium, tuff deposits, and Paleozoic sedimentary rocks. Low velocities are also observed along the Shagan River as it passes through the SW region of the test site for shorter period Rg (0.5–1.0 sec). Iterative, least-squares inversions of the Rg group velocity dispersion curves show shear-wave velocities for the southwestern section that are on average 0.4 km/sec higher than the NE region. At depths greater than 1.5 km the statistical difference between the models is no longer significant. The observed group velocities and different velocity structures correlate with P-wave complexity and with spatial patterns of magnitude residuals observed from nuclear explosions at STS, and may help to evaluate the mechanisms behind those observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call