Abstract

The boreal forests of Central Asia play a vital role in biodiversity protection and regional economic development. It is important to study potential changes in the growth dynamics of boreal species in a context of global change. In this study, we developed a network of 34 tree-ring chronologies for two tree species, Siberian larch (Larix sibirica Ledeb.) and Siberian pine (Pinus sibirica Du Tour). The network extended across a large latitudinal gradient (45°N to 55°N). Principal component analysis (PCA) was used to detect spatial patterns in tree radial growth during a common period 1943–2004. Results indicated an obvious clustering pattern with chronologies being divided into a northeastern (NR) and a southwestern (SR) region. Bootstrapped correlation analyses of regional climate versus aggregated chronologies showed that tree radial growth in both regions was positively associated with summer temperature (June and July). Tree radial growth in the northeastern region was however positively associated with early spring precipitation and spring Palmer Drought Severity Index (PDSI) whereas, in the southwestern region, it was characterized by negative correlations with early summer precipitation and summer PDSI. The warm pool El Niño-Southern Oscillation (WP ENSO) and North Atlantic Oscillation (NAO) regulated tree radial growth through their influence on regional precipitation and temperature. Results suggest that tree radial growth in the region may decline with future projected climate change. This study provides a more comprehensive understanding to tree growth-climate associations across Central Asia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call