Abstract
Friedreich’s ataxia (FA) is an autosomal recessive disorder caused by reduced frataxin (FXN) expression in mitochondria, where the lethal component is cardiomyopathy. Using the conditional Fxnflox/null::MCK-Cre knock-out (Fxn-cKO) mouse model, we discovered significant sex differences in the progression towards heart failure, with Fxn-cKO males exhibiting a worse cardiac phenotype, low survival rate, kidney and reproductive organ deficiencies. These differences are likely due to a decline in testosterone in Fxn-cKO males. The decrease in testosterone was related to decreased expression of proteins involved in cholesterol transfer into the mitochondria: StAR and TSPO on the outer mitochondrial membrane, and the cholesterol side-chain cleavage enzyme P450scc and ferredoxin on the inner mitochondrial membrane. Expression of excitation-contraction coupling proteins (L-type calcium channel, RyR2, SERCA2, phospholamban and CaMKIIδ) was decreased significantly more in Fxn-cKO males. This is the first study that extensively investigates the sexual dimorphism in FA mouse model with cardiac calcium signaling impairment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have