Abstract
Immune responses can increase survival, but they can also incur a variety of costs that may lead to phenotypic trade-offs. The nature of trade-offs between immune activity and other components of the phenotype can vary and depend on the type and magnitude of immune challenge, as well as the energetic costs of simultaneously expressing other traits. There may also be sex-specific differences in both immune activity and trade-offs, particularly with regard to energy expenditure that might differ between males and females during the breeding season. Females are generally expected to invest less in nonspecific immune responses compared to males due to differences in the allocation of resources to reproduction, which may lead to sex differences in the metabolic costs of immunity. We tested for sex-specific differences in metabolic costs of different types of immune challenges in Anolis carolinensis lizards, including lipopolysaccharide (LPS) injection and wounding. We also tested for differences in immune prioritization by measuring bacterial killing ability (BKA). We predicted males would show a greater increase in metabolism after immune challenges, with combined immune challenges eliciting the greatest response. Furthermore, we predicted that metabolic costs would result in decreased BKA. LPS injection increased the resting metabolic rate (RMR) of males but not females. Wounding did not affect RMR of either sex. However, there was an inverse relationship between BKA and wound healing in LPS-injected lizards, suggesting dynamic tradeoffs among metabolism and components of the immune system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have