Abstract
Many songbirds begin active incubation after laying their penultimate egg, resulting in synchronous hatching of the clutch except for a last-hatched individual ("runt") that hatches with a size deficit and competitive disadvantage to siblings when begging for food. However, climate change may elevate temperatures and cause environmental incubation as eggs are laid, resulting in asynchronous hatching and larger size hierarchies among siblings. Although previous work demonstrated that asynchronous hatching reduces nestling growth and survival relative to synchrony, the physiological mechanisms underlying these effects are unclear. To test the effects of asynchronous hatching on runt growth, survival, physiology, and compensatory growth-related tradeoffs, we manipulated incubation temperature in nest boxes of European starlings (Sturnus vulgaris) to increase asynchronous hatching and collected nestling morphological measurements and blood samples to assess physiology and development. Independent of heating treatment, runts from asynchronously hatched nests had lower survival than runts from more synchronous nests. Surviving runts from asynchronous nests were smaller and had reduced stress-induced corticosterone concentrations and reduced circulating glucose compared with runts from synchronous nests. Despite persistent size and energy deficits, runts from asynchronous nests did not have significant deficits in immunity or telomere length when compared with runts from synchronous nests, suggesting no trade-off between investment in immune development or telomere maintenance with growth. Overall, these results suggest that increased asynchrony due to climate change could reduce clutch survival for altricial songbirds, especially for the smallest chicks in a clutch, and that the negative effects of asynchrony may be driven by persistent energetic deficits.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of experimental zoology. Part A, Ecological and integrative physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.