Abstract
Fisher’s sex ratio theory predicts that on average parents should allocate resources equally to the production of males and females. However, when the cost/benefit ratio for producing males versus females differs, the theory predicts that parents may bias production, typically through underproduction of the sex with greater variation in fitness. We tested theoretical predictions in the red-necked phalarope, a polyandrous shorebird with sex-role reversal. Since females are larger and therefore potentially more expensive to produce and may have greater variation in reproductive success, we predicted from Fisher’s hypothesis a male bias in population embryonic sex ratio, and from sex allocation theory, female biases in the clutches of females allocating more resources to reproduction. We measured eggs and chicks and sexed 535 offspring from 163 clutches laid over 6 years at two sites in Alaska. The embryonic sex ratio of 51.1 M:48.9 F did not vary from parity. Clutch sex ratio (% male) was positively correlated with clutch mean egg size, opposite to our prediction. Within clutches, however, egg size did not differ by sex. Male phalarope fitness may be more variable than previously thought, and/or differential investment in eggs may affect the within-sex fitness of males more than females. Eggs producing males were less dense than those producing females, possibly indicating they contained more yolk relative to albumen. Albumen contributes to chick structural size, while yolk supports survivorship after hatch. Sex-specific chick growth strategies may affect egg size and allocation patterns by female phalaropes and other birds.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have