Abstract

We investigate the onset of instability in a stably stratified two-component fluid in a vertical Hele-Shaw cell when the unstably stratified scalar has a settling velocity. This linear stability problem is analysed on the basis of Darcy’s law, for constant-gradient base states. The settling velocity is found to trigger a novel instability mode characterized by pairs of inclined waves. For unequal diffusivities, this new settling-driven mode competes with the traditional double-diffusive mode. Below a critical value of the settling velocity, the double-diffusive elevator mode dominates, while, above this threshold, the inclined waves associated with the settling-driven instability exhibit faster growth. The analysis yields neutral stability curves and allows for the discussion of various asymptotic limits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call