Abstract

The motion and shape of a liquid drop through another continuous liquid phase (conveying phase) in a vertical Hele-Shaw cell with two different apertures were investigated experimentally. Two different liquid/liquid systems were tested. In all cases, the continuous phase was more viscous and wetted the bounding walls. In the capillarity-dominated region, the irregular shape of the discontinuous phase changed with time and distance, with much lower velocity than that of the conveying phase. In contrast to gas/liquid systems, the velocity of these stabilized, elongated drops was 2.5 to almost 5 times higher than that of conveying liquid. Despite the similarities between flow in vertical and horizontal Hele-Shaw cells, the velocity of droplets in a vertical fracture is different from that of a horizontal fracture. A new correlation is derived from dimensionless analysis and the experimental data to predict the elongated drop velocity as a function of the dimensionless parameters governing the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call