Abstract
Signal enhancement related to indentations in a gold surface layer during micro-Raman scattering experiments was investigated. The indentations were prepared based on colloidal templating and the voids filled with 4-mercaptobenzoic acid (MBA)-loaded gold nanospheres. The periodic void structure has been designed to allow selective excitation of a single void in such a way that at the laser wavelength of the micro-Raman setup the cavity-type plasmon modes localized at the metallic void interface can be effectively excited. The surface modification of the gold particles by MBA was studied in detail, and the number of MBA molecules present on a single gold nanoparticle inferred from optical and electrophoretic-mobility measurements was found to be ca. 210. Correlative scanning electron microscopy and micro-Raman measurements allowed the investigations at the single void level. The Raman signal from a single MBA-loaded gold nanoparticle in the cavity was already detectable. The number of particles present at ...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have