Abstract

The Finite-Difference Time-Domain (FDTD) modeling technique is applied to study the effect of the cell membrane thickness in optical immersion enhanced phase contrast microscope imaging. The FDTD approach is also applied for studying the implementation of the optical immersion technique for the visualization of single and multiple gold nanoparticles in biological cells. Three different scenarios of biological cells are considered i) with cytoplasm and membrane, ii) with cytoplasm, nucleus and membrane, and iii) with cytoplasm, nucleus, gold nanoparticle(s) and membrane. To the best of our knowledge, this is the first research study using numerical simulations to analyze the effect of cell membrane thickness and single gold nanoparticles on the forward scattered light from biological cells. The results demonstrate the potential of the FDTD modelling approach for biomedical research and extend its applicability to optical immersion technique enhanced nanobiophotonics imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call