Abstract

Progression through the cell cycle requires ATP for protein synthesis, cytoskeletal rearrangement, chromatin remodeling, and protein degradation. The mechanisms by which mammalian cells increase respiratory capacity and ATP production in preparation for cell division are largely unexplored. Here, we demonstrate that serum induction of cytochrome c mRNA and processed protein in quiescent BALB/3T3 fibroblasts is associated with a marked increase in mitochondrial respiration. Cytochrome c was induced in the absence of any increase in citrate synthase activity or in subunit IV of the cytochrome c oxidase complex mRNA or protein, indicating that the enhanced respiratory rate did not require a general increase in mitochondrial biogenesis or respiratory chain expression. Transfections with a series of cytochrome c promoter mutants showed that both nuclear respiratory factor 1 (NRF-1) and cAMP-response element-binding protein (CREB) binding sites contributed equally to induced expression by serum. Moreover, CREB and NRF-1 were phosphorylated sequentially in response to serum, and the NRF-1 phosphorylation was accompanied by an increase in its ability to trans-activate target gene expression. The results demonstrate that the differential transcriptional expression of cytochrome c, through sequential transcription factor phosphorylations, leads to enhanced mitochondrial respiratory capacity upon serum-induced entry to the cell cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.