Abstract

Numerous small proteins have been discovered across all domains of life, among which many are hydrophobic and predicted to localize to the cell membrane. Based on a few that are well-studied, small membrane proteins are regulators involved in various biological processes, such as cell signaling, nutrient transport, drug resistance, and stress response. However, the function of most identified small membrane proteins remains elusive. Their small size and hydrophobicity make protein production challenging, hindering function discovery. Here, we combined a cell-free system with lipid sponge droplets and synthesized small membrane proteins in vitro. Lipid sponge droplets contain a dense network of lipid bilayers, which accommodates and extracts newly synthesized small membrane proteins from the aqueous surroundings. Using small bacterial membrane proteins MgrB, SafA, and AcrZ as proof of principle, we showed that the in vitro produced membrane proteins were functionally active, for example, modulating the activity of their target kinase as expected. The cell-free system produced small membrane proteins, including one from human, up to micromolar concentrations, indicating its high level of versatility and productivity. Furthermore, AcrZ produced in this system was used successfully for in vitro co-immunoprecipitations to identify interaction partners. This work presents a robust alternative approach for producing small membrane proteins, which opens a door to their function discovery in different domains of life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.