Abstract

Physiological cardiac hypertrophy is associated with mitochondrial adaptations that are characterized by activation of PGC-1alpha and increased fatty acid oxidative (FAO) capacity. It is widely accepted that phosphatidylinositol 3-kinase (PI3K) signaling to Akt1 is required for physiological cardiac growth. However, the signaling pathways that coordinate physiological hypertrophy and metabolic remodeling are incompletely understood. We show here that activation of PI3K is sufficient to increase myocardial FAO capacity and that inhibition of PI3K signaling prevents mitochondrial adaptations in response to physiological hypertrophic stimuli despite increased expression of PGC-1alpha. We also show that activation of the downstream kinase Akt is not required for the mitochondrial adaptations that are secondary to PI3K activation. Thus, in physiological cardiac growth, PI3K is an integrator of cellular growth and metabolic remodeling. Although PI3K signaling to Akt1 is required for cellular growth, Akt-independent pathways mediate the accompanying mitochondrial adaptations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.