Abstract

A green method for simultaneous extraction and enrichment of flavonoids from Euonymus alatus was developed by ultrasonic-assisted extraction (UAE) and temperature-induced cloud point extraction (TICPE) using PEG-base aqueous solution as the extractant. Based on screening different molecular weights of PEGs, PEG-400/water was used as the extractant, and the effects of key factors on extraction yields of flavonoids were investigated by single-factor experiments and response surface methodology (RSM). The optimum conditions of UAE were as follows: PEG-400 concentration of 16% (w/w), particle size of 80 mesh, solvent-to-material ratio of 60:1, extraction temperature of 90°C and extraction time of 15min. The results obtained by validation experiments were consistent with the values predicted by RSM. Temperature-induced formation of the aqueous two-phase system (ATPS) and TICPE process were further investigated by controlling temperature and adding (NH4)2SO4. In the presence of (NH4)2SO4, the ATPS formed at 75℃ and pH 3.5 could effectively improve separation and recovery of flavonoids with enrichment factor of above five times. Gallic acid, catechin, dihydromyricetin and ellagic acid in the extract were identified and confirmed by UPLC-Q-TOF-MS and the corresponding standards. The UAE-TICPE coupled to HPLC was successfully applied for extraction and determination of flavonoids in two batches of Euonymus alatus. The extraction yields of catechin, dihydromyricetin and total flavonoids were 0.377-0.684mg/g, 1.091-1.353mg/g and 2.612-3.146mg/g, respectively. Compared to conventional extraction methods, PEG-based UAE integrated with TICPE in one-step procedure exhibited higher extraction efficiency and better extraction selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.