Abstract
The magnetization of substitutional Tm1 − xYbxB12 solid solutions is studied in the composition range 0 < x ≤ 0.81. The measurements are performed at low temperatures (1.9–300 K) in steady (up to 11 T) and pulsed (up to 50 T, pulse duration of 20–100 ms) magnetic fields. An analysis of the experimental data allowed the contributions to the magnetization of the paramagnetic phase of the Tm1 − xYbxB12 compounds to be separated. These contributions include a Pauli component, which corresponds to the response of the heavy-fermion manybody states that appears in the energy gap in the vicinity of the Fermi level (density of states (3−4) × 1021 cm−3 meV−1), and a contribution with saturation in high magnetic fields attributed to the localized magnetic moments ((0.8–3.7)μB per unit cell) of the nanoclusters formed by rare-earth ions with an antiferromagnetic interaction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have