Abstract

We compare the use of externally applied pulsed and steady magnetic fields for the enhancement of deposition rate in reactive High Power Impulse Magnetron Sputtering (HiPIMS), using the deposition of amorphous hafnium oxide (a-HfO2) on Si as an example. The external magnetic fields were applied by a solenoidal coil, placed above the magnetron target. In the case of a steady magnetic field, a higher voltage was required to initiate the HiPIMS discharge, a longer delay time was observed for current onset, and the films became substoichiometric. For the pulsed magnetic field, film stoichiometry was maintained under all applied external magnetic field strengths. Varying the duration and delay times of the magnetic field after the application of HiPIMS voltage pulse revealed that the afterglow of the plasma between HiPIMS pulses was actively quenched by the presence of the magnetic field. Therefore, the optimum operation with the highest plasma density was obtained by applying the external magnetic field only when the plasma was established and removing it at the end of the HiPIMS pulse. A model to explain the findings is presented in which the target poisoning by oxide formation is determined by the conditions in the afterglow. We describe an approach to achieve maximum deposition rate while maintaining film stoichiometry and high film quality. Amorphous HfO2 films with leakage current through the film of less than 5 × 10−5 A/cm2 at 0.1 MV/cm were obtained at the maximum deposition rate. The refractive index, at a wavelength of 500 nm, of the film prepared with pulsed magnetic field was 2.05 with a very low extinction coefficient of 8 × 10−5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call