Abstract

Yellow phosphorous flue dust (YPFD) is a solid waste produced by the yellow phosphorus industry that contains heavy metals such as zinc (Zn) and lead (Pb), causing environmental damage. In this work, a vacuum metallurgy method is proposed to separate and recover Zn and Pb from solid waste YPFD. Under optimized conditions of 1173 K, 30 wt% reductant dosage, 60 min, and 5–10 Pa, the pre-separation of Zn and Pb was realized and the recovery rates of Zn and Pb reached 92.47% and 99.78%, respectively. In addition, gallium (Ga) remained in the residue with little loss, and then recovered by raising the reaction temperature to 1323 K. The recovery rates of Ga reached 87.57%. The principle of metal volatilization under vacuum at different temperatures was also clarified. The thermodynamic calculations of the carbothermal reduction reaction of metal oxides under vacuum were carried out. The analysis of the product obtained at 1173 K showed that Zn and Pb mainly existed in the form of elemental or simple compounds. At 1323 K, Ga in the residue was highly enriched in the condensation zone, which is conducive for the subsequent purification. The whole process is short, there is no waste water, low levels of pollution of emitted, and the technology provides a clean and sustainable way to reuse YPFD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.