Abstract

The measurement of the external quantum efficiency (EQE) for photocurrent generation at photon energies below the bandgap of semiconductors has always been an important tool for understanding phenomena such as charge photogeneration via tail and trap states. The shape of the subgap EQE can also reveal the subtle but important physics of inter- and intramolecular states that lay at the heart of charge photogeneration in molecular systems such as organic semiconductors. In this work, we examine the influence of optical and electrical noise on the sensitivity of EQE measurements under different electrical and optical bias conditions and demonstrate how to enhance the dynamic range to an unprecedented >100 dB. We identify and study several apparatus-and-device-related factors limiting the sensitivity including: the electrical noise floor of the measurement system; flicker and pick-up noise; probe light source stray light; the photon noise of the light bias source; the electrical noise of the voltage bias source; and the shunt-resistance-limited thermal and electrical shot noise of the device. By understanding and minimizing the influence of these factors we are able to detect EQE signals derived from weak subgap absorption features in both organic and inorganic solar cell systems at photon energies well below their bandgaps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.