Abstract

Sensitivity analysis methods have found extensive use in nuclear criticality safety applications for understanding the impact of uncertain nuclear data on eigenvalue estimates. Significant uncertainty exists in nuclear data and nuclear physics models for photon and electron transport applications, and the goal of this work is to explore whether recently developed adjoint-based, first-order generalized perturbation theory reaction rate sensitivity methods can be extended to coupled Monte Carlo radiation transport simulations. This paper presents a rigorous theoretical derivation for this extended sensitivity analysis method, which is then implemented in a one-dimensional test Monte Carlo code. The adjoint-based sensitivity coefficients are found to agree well with reference direct perturbation and deterministic SENSMG sensitivity coefficients for a simple test problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.