Abstract

We present an electrolyte-gated graphene field effect transistor (GFET) nanosensor using aptamer for rapid, highly sensitive and specific detection of a lung cancer biomarker interleukin-6 (IL-6) with enhanced stability. The negatively charged aptamer folds into a compact secondary conformation upon binding with IL-6, thus altering the carrier concentration of graphene and yielding a detectable change in the drain-source current Ids. Aptamer has smaller size than other receptors (e.g. antibodies), making it possible to bring the charged IL-6 more closely to the graphene surface upon affinity binding, thereby enhancing the sensitivity of the detection. Thanks to the higher stability of aptamer over antibodies, which degrade easily with increasing storage time, consistent sensing performance was obtained by our nanosensor over extended-time (>24h) storage at 25°C. Additionally, due to the GFET-enabled rapid transduction of the affinity recognition to IL-6, detection of IL-6 can be achieved in several minutes (<10min). Experimental results indicate that this nanosensor can rapidly and specifically respond to the change in IL-6 levels with high consistency after extended-time storage and a detection limit (DL) down to 139 fM. Therefore, our nanosensor holds great potential for lung cancer diagnosis at its early stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.