Abstract
One of the most difficult problems in applications of semiparametric generalized partially linear single-index model (GPLSIM) is the choice of pilot estimators and complexity parameters which may result in radically different estimators. Pilot estimators are often assumed to be root-n consistent, although they are not given in a constructible way. Complexity parameters, such as a smoothing bandwidth are constrained to a certain speed, which is rarely determinable in practical situations. In this paper, efficient, constructible and practicable estimators of GPLSIMs are designed with applications to time series. The proposed technique answers two questions from Carroll et al. (1997): no root-n pilot estimator for the single index part of the model is needed and complexity parameters can be selected at the optimal smoothing rate. The asymptotic distribution is derived and the corresponding algorithm is easily implemented. Examples from real data sets (credit-scoring and environmental statistics) illustrate the technique and the proposed methodology of minimum average variance estimation (MAVE).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.