Abstract
Influence of the semiconductor film thickness in the double-gate silicon on-insulator (SOI) MOSFET on the electron concentration distribution, electron charge density, threshold voltage, electron effective mobility, and drain current is theoretically analyzed. The consideration of the semiconductor region is based on two descriptions: the "classical" model based on a solution to the Poisson equation and the "quantum" model based on a self-consistent solution to the Schrodinger and Poisson equation system. The electron effective mobility and the drain current are calculated with the use of the local mobility model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.