Abstract

The annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unsupervised samples, such that their correct labeling can improve the classification performance. Our proposal makes use of semi-supervised methodologies to classify an unlabeled training set that is used to train a Convolution Neural Network using different training strategies. The proposed approach is experimentally validated for soybean leaf and herbivorous pest identification using images captured by Unmanned Aerial Vehicles and can support specialists and farmers in the pest control management in soybean fields, especially when they have a limited amount of labeled samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.