Abstract

The annotation of large datasets is an issue whose challenge increases as the number of labeled samples available to train the classifier reduces in comparison to the amount of unlabeled data. In this context, semi-supervised learning methods aim at discovering and propagating labels to unlabeled samples, such that their correct labeling can improve the classification performance. In this work, we propose a semi-supervised methodology that explores the optimum connectivity among unlabeled samples through the Optimum-Path Forest (OPF) classifier to improve the learning process of Convolution Neural Networks (CNNs). Our proposal makes use of the OPF to classify an unlabeled training set that is used to pre-train a CNN for further fine-tuning using the limited labeled data only. The proposed approach is experimentally validated on traditional datasets and provides competitive results in comparison to state-of-the-art semi-supervised learning methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.