Abstract

Deep generative models (DGMs) have the potential to revolutionize diagnostic imaging. Generative adversarial networks (GANs) are one kind of DGM which are widely employed. The overarching problem with deploying any sort of DGM in mission-critical applications is a lack of adequate and/or automatic means of assessing the domain-specific quality of generated images. In this work, we demonstrate several objective and human-interpretable tests of images output by two popular DGMs. These tests serve two goals: (i) ruling out DGMs for downstream, domain-specific applications, and (ii) quantifying hallucinations in the expected spatial context in DGM-generated images. The designed datasets are made public and the proposed tests could also serve as benchmarks and aid the prototyping of emerging DGMs. Although these tests are demonstrated on GANs, they can be employed as a benchmark for evaluating any DGM. Specifically, we designed several stochastic context models (SCMs) of distinct image features that can be recovered after generation by a trained DGM. Together, these SCMs encode features as per-image constraints in prevalence, position, intensity, and/or texture. Several of these features are high-order, algorithmic pixel-arrangement rules which are not readily expressed in covariance matrices. We designed and validated statistical classifiers to detect specific effects of the known arrangement rules. We then tested the rates at which two different DGMs correctly reproduced the feature context under a variety of training scenarios, and degrees of feature-class similarity. We found that ensembles of generated images can appear largely accurate visually, and show high accuracy in ensemble measures, while not exhibiting the known spatial arrangements. The main conclusion is that SCMs can be engineered, and serve as benchmarks, to quantify numerous per image errors, i.e., hallucinations, that may not be captured in ensemble statistics but plausibly can affect subsequent use of the DGM-generated images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.