Abstract
Recent progress in visual speech recognition systems due to advances in deep learning and large-scale public datasets has led to impressive performance compared to human professionals. The potential applications of these systems in real-life scenarios are numerous and can greatly benefit the lives of many individuals. However, most of these systems are not designed with practicality in mind, requiring large-size models and powerful hardware, factors which limit their applicability in resource-constrained environments and other real-world tasks. In addition, few works focus on developing lightweight systems that can be deployed in such conditions. Considering these issues, we propose compact networks that take advantage of hypercomplex layers that utilize a sum of Kronecker products to reduce overall parameter demands and model sizes. We train and evaluate our proposed models on the largest public dataset for single word speech recognition for English. Our experiments show that high compression rates are achievable with a minimal accuracy drop, indicating the method’s potential for practical applications in lower-resource environments. Code and models are available at https://github.com/jpanagos/vsr_phm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.