Abstract
This article provides the theory and application of the 2-stage maximum likelihood (ML) procedure for structural equation modeling (SEM) with missing data. The validity of this procedure does not require the assumption of a normally distributed population. When the population is normally distributed and all missing data are missing at random (MAR), the direct ML procedure is nearly optimal for SEM with missing data. When missing data mechanisms are unknown, including auxiliary variables in the analysis will make the missing data mechanism more likely to be MAR. It is much easier to include auxiliary variables in the 2-stage ML than in the direct ML. Based on most recent developments for missing data with an unknown population distribution, the article first provides the least technical material on why the normal distribution-based ML generates consistent parameter estimates when the missing data mechanism is MAR. The article also provides sufficient conditions for the 2-stage ML to be a valid statistical procedure in the general case. For the application of the 2-stage ML, an SAS IML program is given to perform the first-stage analysis and EQS codes are provided to perform the second-stage analysis. An example with open- and closed-book examination data is used to illustrate the application of the provided programs. One aim is for quantitative graduate students/applied psychometricians to understand the technical details for missing data analysis. Another aim is for applied researchers to use the method properly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.