Abstract
The application of unidimensional IRT models requires item response data to be unidimensional. Often, however, item response data contain a dominant dimension, as well as one or more nuisance dimensions caused by content clusters. Applying a unidimensional IRT model to multidimensional data causes violations of local independence, which can vitiate IRT applications. To evaluate and, possibly, remedy the problems caused by forcing unidimensional models onto multidimensional data, we consider the creation of a projected unidimensional IRT model, where the multidimensionality caused by nuisance dimensions is controlled for by integrating them out from the model. Specifically, when item response data have a bifactor structure, one can create a unidimensional model based on projecting to the general factor. Importantly, the projected unidimensional IRT model can be used as a benchmark for comparison to a unidimensional model to judge the practical consequences of multidimensionality. Limitations of the proposed approach are detailed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.