Abstract

The interaction of light and swift electrons has enabled phase-coherent manipulation and acceleration of electron wave packets. Here, we investigate this interaction in a new regime where low-energy electrons (∼20-200 eV) interact with a phase-matched light field. Our analytical and one-dimensional numerical study shows that slow electrons are subject to strong confinement in the energy domain due to the nonvanishing curvature of the electron dispersion. The spectral trap is tunable and an appropriate choice of light field parameters can reduce the interaction dynamics to only two energy states. The capacity to trap electrons expands the scope of electron beam physics, free-electron quantum optics and quantum simulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.