Abstract
This article proposes a novel deep transfer learning-based online remaining useful life (RUL) approach for rolling bearings under unknown working condition. This approach solves the following concerns: the drift of online working condition would block data accumulation and raise bias in the prediction model, and online bearing merely has early fault data when activating RUL prediction, failing to conduct transfer learning from offline data. First, a new transfer learning-based time series recursive forecasting model is constructed to generate online RUL pseudovalues via fusing prior degradation information from offline whole-life data. With such supervised information, a new deep domain-adversarial regression network with multilevel adaptation is further built to transfer prognostic knowledge from offline data to online scenario and evaluate the RUL values of online data batch. Experimental results on the IEEE PHM Challenge 2012 bearing dataset and XJTU-SY bearing dataset validate the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.