Abstract
Remaining useful life (RUL) prediction of rolling bearings is of great importance in improving the reliability and durability of rotating machinery. This paper proposes a dual-attention-based convolutional neural network with accurate stage division for rolling bearings RUL prediction, which includes two subsections, i.e., First prediction time (FPT) determination and RUL estimation. Firstly, signal features characterizing the bearing degradation process are fused by Wasserstein Distance to perform two stage division with great robustness. The correct labeled RUL samples with explicit degradation property are then prepared for future network training. Dual attention mechanism is adopted to not only focus on the effect of different sensor signals but also different time steps. Afterwards, multiscale convolution is utilized to both extract local and global weighted features to obtain more comprehensive information. Finally, several convolutional blocks are applied to further obtain accurate RUL prediction. The results derived from fault-mechanism-based simulation signals and experimental signals show that the proposed method is more effective and robust by ablation and comparison study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.